
PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 1

Pattern recognition in Cross-Country Skiing videos
by means of Artificial Intelligence algorithms

Alberto Mira Criado

Abstract—Within the last years, mastering the technique of
Cross-Country Skiing (XCS) athletes has become crucial in order
to achieve better results whilst training or even in competitions.
Based on this premise, this paper aims to present a software
project, which merges up as a tool for coaches to obtain the
five most important XCS patterns out of both lateral and frontal
videos in an automated way, substituting the traditional methods,
which tend to be time-consuming. The software presents several
steps, going from when a video is obtained as an input, until the
generation of a dataset in order to train a Neural Network (NN).
In this case, three different types of NN with different capacities
have been trained, resulting in the Convolutional Neural Network
(CNN) model being the one showing the best performance in both
frontal and lateral videos, with an overall accuracy of 81.48%
and 81.78% respectively.
This software chain has been applied to the technique Skating 1-1,
showing that the easiest pattern to classify correspond to the leg
push (pattern number five), achieving a general accuracy when
having account of both lateral and frontal videos of 91.76%.
Finally, despite not being tested with a large dataset, an inte-
grated single-script software has been programmed. It uses these
CNN trained models in order to classify both types of video,
giving as an output a folder containing the cycles found in a
video under certain conditions, as well as a .txt files, where the
probabilities coming from the NN model with respect to each
single pattern of each cycle are shown, so, that way, coaches can
better interpret the output data.

Index Terms—Cross-Country Skiing (XCS), Regions of Interest
(ROIs), Neural Networks (NN), YOLOv3, OpenPose

I. INTRODUCTION

CRoss-country skiing (XCS), is a high intensity physical
activity which requires the activation of both the upper

and the lower body [1]. There are two main styles of XCS,
classical and skating, and it is known that, through the
years, the speed in races has notably increased, requiring
improvements in technical and tactical abilities to bolster the
general athlete’s performance, since, on average, even 25
switches from one sub-technique to another can be required
in a single kilometre [2].

The relation between physiology and technique has
been already described in literature, and, among other
characteristics, fast athletes often present shorter poling and
thrust phases, along with longer gliding and recovery stages
[3]. In fact, changes in technique and training have led them
to reduce their metabolic cost by more than 50% per metre,
something important having account of the fact that uphill
phases represent one third of time in XCS competitions [2],
as Fig. 1 shows:

Fig. 1: Speed of different phases (known as gears) in Skating
competitions. X axis represent the speed, and Y one stands

for the inclination of each one of the phases [2].

Traditionally, XCS publications were mostly about
physiology, but especially since the beginning of the
millennium, this trend has changed, being biomechanics the
most recurrent topic, something that can be due to several
factors like the use of technology to obtain both kinetic and
kinematics data that can be analysed afterwards, or the current
interest in looking into the connection between biomechanics
and physiology [4].

All in all, the aim of this work is to develop a software
which is able to obtain the five most important patterns of XCS
videos (Skating 1-1 concretely), since this task is normally
done manually, resulting in a very time-consuming procedure.
Therefore, with this new tool, this long process would be
substitute for an automated method, leading to a situation
where a lot of athletes could receive instant feedback about
all related to their performance.

II. METHODS

In this project, a whole software chain has been developed,
consisting of several algorithms with a specific purpose, from
the beginning, where a video is given as an input, to the final
train and test of three Neural Network (NN) models, whose
performance to classify Skating 1-1 data has been analysed.
The videos were provided by the Institute of Applied
Training (Institut für Trainingswissenschaft, IAT), along with
the above-mentioned five most important patterns of each
video.
Finally, it is well noting that the software has been written with
Python (version 3.7), and the programming environment has
been PyCharm Professional 2020.2 (PyCharm Professional
2020.3 when using the MCI Super Computer), provided by



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 2

JetBrains s.r.o, with a licence for educational use only.

A. Video frames, regions of interest and data augmentation

As it has been previously said, the input of this project is
a video. It can be either a lateral or a frontal one, and the
first step is to get its frames. This task has been performed
with OpenCV [5], and along with the frame obtainment, data
augmentation was coming into effect, too, by means of a
function which rotated images X degrees, inspired by [6].
The exact rotation degree interval was [10,10), and rotation
degrees were uniformly distributed by means of [7]. Then,
for every frame obtained, two additional ones were generated,
leading to a posterior increment of the dataset size.
Once the frames were obtained, it was necessary to obtain the
regions of interest (ROIs) from them, meaning the place of
the image were the athlete is located, task that was done with
YOLOv3 [8], an object-detection software which has proven
to run faster than other similar algorithms, as Fig. 2 shows:

Fig. 2: Inference time comparison between YOLOv3 and
other similar object-detection algorithms [8].

Along with the ROIs, YOLOv3 is able to extract four
coordinates (x,y,w,h), where w stands for width, and h for
height, out of the bounding boxes, and, consequently, ROIs,
that it detects [8]. These four coordinates are the beginning
of the feature extraction that will be necessary for the dataset
creation in order to train and test the NN models.
Finally, YOLOv3 can detect up until 80 classes [8], but within
the scope of this project, this has been programmed in such
a way that it only detects the class person, so only ROIs
containing the athlete can be extracted, as Fig. 3 shows:

(a) (b)

Fig. 3: Frontal a) and lateral b) detections of YOLOv3 in a
frame.

B. Data labelling

Once the ROIs of the videos are obtained, it is time to
compare them with the patterns that were provided along with
the videos, so the data can be properly classified.
The comparison task has been made by using a SIFT (Scale-
Invariant Feature Transform) algorithm [9]. The idea behind
this SIFT algorithm is to detect the most important (x,y)
keypoints, which, as described in [9], it does it by performing
a Difference of Gaussians (DoG), an approximation of Laplace
of Gaussians (LoG), which can be better seen in Fig. 4:

Fig. 4: Example of DoG performed by a SIFT algorithm [9].

Therefore, SIFT was applied to all the ROIs obtained from
each video, as well as to the given pattern. After that, the
comparison between the keypoints in both images was effected
by a knnMatch Brute-Force Matcher [10], where k was set to
2. A graphical description of this comparison can be visualised
in Fig. 5:

Fig. 5: Matching example between a ROI obtained from a
video and a given pattern.

In the end, when all the ROIs of a video are compared with
a given pattern, a matching sequence is obtained, where the
ROI with the highest amount of matches would be eventually
considered a pattern.



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 3

C. Feature extraction

As previously stated, the feature extraction process starts
with YOLOv3 [8], but actually, if only those four coordinates
were used to train and test a NN model, it would not likely
perform well. For that reason, more features with regard to
the ROIs are needed, so a more complete dataset can be
offered to the NN, and, to perform this task, OpenPose [11]
[12] [13] [14] was used.
OpenPose, as described in [12], is a software which is able
to extract up until 135 keypoints on 2D images, with regard
to the human body, feet, hands and face, although within this
project, only 25 were used, which can be better visualised in
Fig. 6:

Fig. 6: Graphical description of an skeleton showing the 25
keypoints detected by OpenPose which has been used for the

scope of this project [15].

It is well noting that it is possible to use a CPU and a
GPU version of OpenPose. These two were used (CPU when
working locally, and the GPU version whilst using the MCI
super computer), although the final dataset of the project was
obtained with the GPU version. Both releases are available in
[16].

D. Dataset creation

Now that all the information to train and test the NN models
has been gathered, it is time to put it all together, and create
a dataset with an uniform structure. To do that, for every ROI
which was chosen as a pattern, (x,y) OpenPose coordinates
of all of the 25 keypoints plus the four YOLOv3 coordinates
were used. Consequently, the final dataset’s size was 27x2 per
pattern, which was stored in the form of NumPy arrays [17],
which were eventually converted to tensors, since the library
used to create the NN models was TensorFlow [18].
As a clarification, not all the three models received the same
input. In fact, only two of them did, because one of the chosen

models was a Convolutional Neural Network (CNN), whose
input needed to be modified to (6,9,1) tensors.

E. Neural Network models

In the project, as it has been mentioned, three models were
created, using the library TensorFlow. Concretely, [19] was the
source followed to implement them.
Since there is not an exact way to succeed when creating a
NN model, the only way to go, as stated in [19] is to go
on trying, generally from simpler to more complex models.
This is the reason why three models with different learning
capacities were tested. These three models correspond to a
Simple Neural Network (sNN, the word Simple is just to state
that it was the model with the lowest learning capacity out of
the three, it does not mean that the model is inappropriate or
the like, since, as it will be shown afterwards, it did not present
the worst performance out of them), a LSTM (Long Short-
Term Memory) Neural Network, and, finally, a Convolutional
Neural Network (CNN).
The capacity of each one of the models created can be better
seen in Fig.

(a)

(b)

(c)

Fig. 7: Architecture of the models used in the project,
showing their capacity: a) sNN, b) LSTM, and c) CNN.

F. Software as a whole

As it can be appreciated from the last steps, this project
is about a compounding of several software steps to arrive



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 4

at a goal, which is the generation of a model that is able to
generalise well when it is presented a video that it has not
been seen beforehand.
The results of the models will be explained in detail after-
wards, but, the purpose of this Software as a whole is for
anyone who might want to use this software after seeing the
output. Therefore, a single script has been made.
The outline of it is similar is just a gathering of all last steps,
but adapted to this purpose. First of all, the input, as always, is
a video (either lateral or frontal). After reading the video, the
software gets the frames of the video by means of OpenCV
[5]. Then, YOLOv3 [8] gets the ROIs of the athletes presented
in those frames and extract the first four coordinates.
Once the ROIs are obtained, it directly computes those ROIs
with OpenPose [11] [12] [14] [13] and obtain the 25 keypoints.
It is important to state that it might happen that more than
one person appears in a ROI. For that reason, more than one
skeleton would be detected by OpenPose, and, consequently,
the information related to those skeletons which are non-
desirable for the project is also gathered. Thus, this script, also
gets rid of those skeletons and keeps only the one that is related
to the athlete and creates the arrays with the information
coming from both OpenPose and YOLOv3.
So far, the procedure is similar to the previous steps that have
been explained throughout the methods sections, but from now
on, it differs a little bit more, since, right after that, a pre-
trained model is opened (CNN model, which, as it will be
discussed in the results section, it was the one that presented
the best accuracy in both lateral and frontal videos), and the
dataset which has been just obtained is classified.
The output of the model, as reflected in [19], is a vector
of probabilities, corresponding to each one of the patterns
of the project. Therefore, it is had, for every array (tensor
once it is converted) which is directly related to a ROI, a
probability to be pattern 1, another one to be pattern 2, and so
on. Thus, by means of the function find peaks() [20], patterns
and, consequently, cycles, are found.
The starting prominence of this function is set to 0.9, so, if
there is a cycle with all the patterns over that prominence, the
script returns it, otherwise, the prominence starts decreasing
in steps of 0.05 up until the algorithm is able to find a cycle
accomplishing the prominence restriction.
In the end, the output is a folder (following [21], as always
in this project), containing the athlete’s cycle found under a
certain prominence, as well as a .txt file where it is reflected
the individual probability of each one of the patterns of the
cycle found, i.e., how sure the model is about pattern 1 being
really a pattern 1, pattern 2 being really a pattern 2, and so
on.
Finally, this software part can be summarised like that:

• Video as an input and get its frames
• Get ROIs and their coordinates
• Get keypoints and select the desirable skeleton per ROI

in case there is more than one
• Create the dataset and open the pre-trained models
• Find cycles along with their probabilites
• Folder as an output

III. RESULTS

Before going into detail with all the results part, it is
important to first state that despite there are lateral and frontal
videos, the same model architecture of each one of the three
model was use for both cases. For instance, as an example
to clarify this, when it comes to LSTM, there are not two
different LSTM model architectures, but just one, and this
model is used to learn from lateral and frontal videos, so,
eventually, two models with the same architecture are had.
Despite the models are the same for lateral and frontal, since
the dataset is different, the weigths associated to them will be
different. This means that, if the same model is trained with
two different dataset, as it happened here, the result will be
two models with the same architecture, but they will behave
different beside a video once trained.
All the models were trained for 1000 epochs to see the point
where the validation set accuracy did not improve by epoch
anymore. After that, the model was then trained with up until
that number of epochs. In this paper, only the CNN results
were shown as figures, since this was the model that performed
the best in both cases (frontal and lateral videos). Despite that,
these results will be compared to the ones obtained with the
other two models, so, although not all of the results will be
shown graphically, they will be detailed anyway.
Finally, one of the graphical results that will be shown with
regard to the CNN will be confusion matrix. It is important
to state that the code to implement it was not retrieved from
[19], but from [22].

A. Dataset

Since the number of lateral videos was not the same as the
frontal one, the lateral dataset and the frontal one have got
different size. This can be better seen in TABLE I:

Type Number of tensors
Lateral 2562
Frontal 2521

TABLE I: Dataset of the frontal and lateral videos.

In both cases, the dataset was splitted, having got the 80%
of it as a train set, and the lasting 20% as a test set. Also, out
of the 80% train set, a 10% was kept as validation set.
The reason why a part of the train set has been kept as a
validation set is because the accuracy of this last one will
be key in terms of training the models, since, in general
terms, there is a time when any model does not improve
its performance any longer, even when it is being trained
through more and more epochs [19]. For that reason, every
model (in both cases, with the lateral and frontal dataset)
will be trained, as previously said, for 1000 epochs at first,
to see where that point is located. This way, they can be
prevented from overfitting, a situation where the model is just
mistaught, learning characteristics of the dataset that are not
really generalisable [19].



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 5

B. CNN

1) Lateral videos: after training the CNN with lateral
videos for 1000 epochs, the result obtained can be seen in
Fig. 8:

Fig. 8: Accuracy of the train and validation set after training
the CNN model for 1000 epochs with the lateral dataset.

It can be visualised that around the epoch 300, the validation
set starts drawing a plateau state, where the improvement is
not really palpable. Besides, it is from this point that the train
accuracy starts to slightly diverge from the validation one,
suggesting that it is from here that the model starts to get
overfitted.
This diversion is different in both sNN and LSTM models,
being at the epoch 400 in the case of the first, and 170 when
it comes to the second. A priori, this might sound logical
because the learning capacity of the LSTM model is the
highest, followed by the CNN, and, eventually, the sNN.

Afterwards, the CNN model was trained for 300 epochs,
showing an overall accuracy of 81.48%, where each individual
percentage for each pattern can be better seen in TABLE II.

TABLE II: Individual accuracy of each one of the patterns
whilst classifying the lateral test set after training the CNN

model.

Pattern Accuracy
Initial position 82.65%

Pole Plant 86.21%
Push 77.5%

Pole release 85.87%
Leg push 86.42%
Pattern 6 68%

About the overall accuracy of sNN and LSTM, it was
77.00% and 51.27% respectively.

Finally, the confusion matrix for the CNN model can be
seen depicted in Fig. 9:

Fig. 9: Confusion matrix of the CNN model once trained
with the lateral dataset

It can be appreciated that the best performance correspond
to pattern 5 (leg push), being the worst accuracy the one
corresponding to pattern 6, something that will be discussed
afterwards.

2) Frontal videos: when it comes to the frontal videos,
the output after training the CNN model was similar to the
lateral one, since the point where the validation set starts to
become stable and the overfitting starts is also around the
epoch number 300. This can be better seen depicted in Fig.
10:

Fig. 10: Accuracy of the train and validation set after training
the CNN model for 1000 epochs with the frontal dataset.

About the sNN and LSTM models, the diversion point starts
at 300 and 200 respectively.
Therefore, same as before, the models were trained up until
they start to overfit, and in the case of the CNN model, the
overall accuracy obtained was 81.78%, which is considerably
better than the sNN model, presenting a 66.34% of accuracy,
and finally, the LSTM one, whose accuracy percentage falls
until 63.76%.
The performance of the CNN model in each one of the patterns
can be better visualised in TABLE III.



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 6

TABLE III: Individual accuracy of each one of the patterns
whilst classifying the frontal test set after training the CNN

model.

Pattern Accuracy
Initial position 87.18%

Pole Plant 59.15%
Push 81.43%

Pole release 85.26%
Leg push 97.09%
Pattern 6 73.86%

Finally, the confusion matrix associated to the CNN frontal
model is (see Fig 11):

Fig. 11: Confusion matrix of the CNN model once trained
with the frontal dataset

In this case, the best accuracy corresponds to the leg push
once again, which it is almost 100%, by only getting confused
two times with pattern 4 (pole release), and another one with
the pattern six. But this time, the worst one lies in the pole
plant. Despite that, the sixth pattern presents the second-worst
accuracy, suggesting that it might not be a coincidence that
this pattern is usually at the bottom of the best accuracies
achieved by a model.
On the other hand, a deeper explanation of the findings will
be given in the discussion section.

C. Software as a whole

With respect to this part, whose steps have been previously
defined, it is important to say that, so far, it has not been
possible to test it with large datasets, but with a few videos.
This is because the videos provided by the IAT were used to
train and test the NN models, since, for now, that has been
the priority of the project.
The output of the software is a folder [21] with the same
structure as the input folder containing both the frontal and
lateral video, e.g., if the original folder has got the structure
Lateral → Athlete A → Video of athlete A, then the layout of
the output folder would be Lateral → Athlete A → Cycles of
athlete A found.

IV. DISCUSION

The results of the three models that has been programmed
for the scope of this project have been presented, leading
to the conclusion that the model which performed the best
was the CNN, which, in fact, is not either the one with the
highest capacity or the lowest, but it remains in the middle.
The models were trained 1000 for epochs to better understand
the point where the overfitting starts, and then, they were
recompiled and trained up until that point.
In general terms, the model that needed the lowest number of
epochs to ”understand” the dataset was the LSTM, something
that was expected, since it is the one with the highest capacity.
When it comes to both the sNN and the CNN, the points
were similar with the frontal dataset, and a little bit more
different when it comes to the lateral one. Despite that, it
can be said that their learning performance behaved similar,
something that, a priori, is understandable, because despite
their learning capacity is, as said, different, they are closed to
each other with respect to this, than anyone of them is with
LSTM.
The results obtained clarify that a highest capacity does not
necessarily translate into a better performance, but it depends
on the situation, and, in the end, on the dataset, since LSTM,
being the one with the highest capacity, presented the worst
accuracies once it was presented the test set.
On the other hand, it can be appreciated that, in general
terms, the best accuracies always lied in the fifth pattern
(leg push), something that was expected, since it is the most
distinguishable movement in terms of the athlete’s position.
Conversely, the worst ones tended to pertain to the sixth
pattern, which was also expected, since this pattern is more
heterogeneous than the others, because, from pattern 1 to 5,
the movement that the athlete performs is constant and clear,
but, when it comes to the sixth pattern, the ROIs chosen
were those ones which were not classified as a pattern 1,2,3,4
or 5. Besides that, the sixth pattern has got, beforehand, a
disadvantage, and it is that despite being more heterogeneous,
the dataset associated to it cannot be much larger than any
other pattern, because, if that happens, it can happen that the
model gets really biased because of the dataset, meaning that
it would generalise really well in all about the sixth pattern,
but then, the accuracies with respect to the other patterns
would be lower, and that is not desirable in this case, because,
the goal of the project, as it has been previously explained, is
to obtain the five most important patterns of a XCS (Skating
1-1 in this case) video. Therefore, the utmost priority must
be these first five patterns at all time, which is what has been
done throughout this project.

Finally, the desirable output of the project would be a
software which is able to directly read the content of an input
folder, and directly gather the five most important patterns of
the videos (content of the folder). This part has been also
accomplished, although, as it has been described, it has not
been possible to test this with large datasets, but with just
some few videos, since the provided videos were used to train
and test the models the way it has been explained.



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 7

V. CONCLUSION

This project comprises two main different parts: the first
one is mostly about the reason why this work merges up,
and it is the most theoretical part. In it, it has been stated
that XCS is a high intensity physical activity (HIPA) that
requires the activation of both the upper and the lower body
[1]. From here, an outline of how the topics in literature with
respect to XCS are changing, being traditionally more related
to physiology, and, currently, more linked to biomechanics,
being one of the main reasons the fact that, by means of
technology, it is now possible to obtain kinematic and kinetic
data, for a posterior analysis of them, so, in the end, a
better understand of the relation between physiology and
biomechanics will come up [4].
This trend is that strong, that even there are some articles in
literature which introduce a term which exactly describes the
scope of this project, which is digital coaching [23], since, in
the end, the aim of this project is to create AI models that can
generalise well beside unknown input data. This way, coaches
could use this software to provide the athletes with instant
feedback about their performance, substituting the manual
traditional methods, which are really time consuming and
require a lot of effort from coaches to have got to watch every
single video and retrieve the five most important patterns by
hand.

The second part of this project is the software one, which
based on the above theory, aims to fulfil this need.
A whole software chain has been designed, accomplishing
each one of the steps necessary to train and test NN models.
Every part of this chain comprises different goals.
Throughout these steps, it is possible to find well-known
software, like YOLOv3 [8] for object detection, or OpenPose
[11] [12] [14] [13], for feature extraction, as well as also
widely-used libraries like OpenCV [5] for frame obtainment,
or TensorFlow [18], to build all related to the NN models.
Along the process there have been parts of code that needed
to be created, such as a function for YOLOv3 in order to
obtain the information that is useful for this project, or the
selection of the right skeletons in case there are more than
one in a ROI found, among others. In the end, this all led to
the NN, which was the last step, and, for the scope of this
work, three different types of NN (sNN, LSTM and CNN)
with different learning capacities have been implemented,
obtaining that the most ideal one for this project is the CNN,
showing an overall accuracy of 81.48% for lateral videos,
percentage that increases up to 81.78% for frontal ones,
arriving to the conclusion that the pattern 5 (leg push) seems
to be the easiest, in general terms, to classify, showing an
overall accuracy of 91.76% if both lateral and frontal videos
are taken into account. Conversely, the sixth pattern seemed
to be the hardest one to differentiate, possibly because of
the heterogeneity it presents. Therefore, this model has been
chosen to be part of the final software that, despite it needs
more testing with large datasets, it returns all the information
related to the cycles found in a video.

ACKNOWLEDGMENT

First of all, I would like to thank my supervisor, Bernhard
Hollaus, for introducing me to the topic and his support along
these months, as well as Ronny Fudel, who, on behalf of the
Institute for Applied Training Science (Institut für Angewandte
Trainingswissenschaft (IAT) in German), provided the videos
and the patterns related to the videos, so this project could be
carried out.
Last but not least, I would also like to thank everyone who
has supported me somehow all along this process. It would
have not been the same without you.

REFERENCES

[1] J. A. Laukkanen, S. K. Kunutsor, C. Ozemek, T. Mäkikallio, D.-c.
Lee, U. Wisloff, and C. J. Lavie, “Cross-country skiing and running’s
association with cardiovascular events and all-cause mortality: A review
of the evidence,” Progress in cardiovascular diseases, vol. 62, no. 6, pp.
505–514, 2019.

[2] T. Losnegard, “Energy system contribution during competitive cross-
country skiing,” European journal of applied physiology, vol. 119, no. 8,
pp. 1675–1690, 2019.

[3] C. Zoppirolli, K. Hébert-Losier, H.-C. Holmberg, and B. Pellegrini,
“Biomechanical determinants of cross-country skiing performance: A
systematic review,” Journal of sports sciences, vol. 38, no. 18, pp. 2127–
2148, 2020.

[4] S. Lindinger, P. Komi, O. Ohtonen, and V. Linnamo, “Developments
and methodological aspects in cross-country skiing research,” Science
and Noridc Skiing II–Proc 2nd Int Congr Science and Nordic Skiing
(ICSNS). University of Jyväskylä, Jyväskylä, pp. 13–22, 2013.

[5] G. Bradski, “The opencv library,” Dr Dobb’s J. Software Tools, vol. 25,
pp. 120–125, 2000.

[6] Paperspace. Data augmentation for object detection. Accessed
2021-07-31. [Online]. Available: https://github.com/Paperspace/
DataAugmentationForObjectDetection

[7] Numpy. numpy.random.uniform. Accessed 2021-07-31. [Online]. Avail-
able: https://numpy.org/doc/stable/reference/random/generated/numpy.
random.uniform.html#numpy-random-uniform

[8] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[9] OpenCV. Introduction to SIFT (Scale-Invariant Feature Transform).
Accessed 2021-07-31. [Online]. Available: https://docs.opencv.org/
master/da/df5/tutorial py sift intro.html

[10] ——. Feature Matching. Accessed 2021-07-31. [Online]. Available:
https://docs.opencv.org/4.5.2/dc/dc3/tutorial py matcher.html

[11] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7291–
7299.

[12] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose:
realtime multi-person 2d pose estimation using part affinity fields,” IEEE
transactions on pattern analysis and machine intelligence, vol. 43, no. 1,
pp. 172–186, 2019.

[13] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection
in single images using multiview bootstrapping,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 1145–1153.

[14] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
pose machines,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2016, pp. 4724–4732.

[15] J. Scott, C. Funk, B. Ravichandran, J. H. Challis, R. T. Collins, and
Y. Liu, “From kinematics to dynamics: Estimating center of pressure
and base of support from video frames of human motion,” arXiv preprint
arXiv:2001.00657, 2020.

[16] CMU-Perceptual-Computing-Lab. openpose. Accessed
2021-07-31. [Online]. Available: https://github.com/
CMU-Perceptual-Computing-Lab/openpose

[17] NumPy. numpy.array. Accessed 2021-07-31. [Online]. Available:
https://numpy.org/doc/stable/reference/generated/numpy.array.html

https://github.com/Paperspace/DataAugmentationForObjectDetection
https://github.com/Paperspace/DataAugmentationForObjectDetection
https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html#numpy-random-uniform
https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html#numpy-random-uniform
https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/4.5.2/dc/dc3/tutorial_py_matcher.html
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://numpy.org/doc/stable/reference/generated/numpy.array.html


PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2021 8

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[19] TensorFlow. Tensorflow core. tutorials. Accessed 2021-07-31. [Online].
Available: https://www.tensorflow.org/tutorials

[20] SciPy. scipy.signal.find peaks. Accessed 2021-07-31. [Online]. Avail-
able: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
find peaks.html

[21] T. point. Python os.mkdir() Method. Accessed 2021-07-31. [Online].
Available: https://www.tutorialspoint.com/python/os mkdir.htm

[22] Deeplizard. Keras - Python Deep Learning Neural Network API.
Accessed 2021-07-31. [Online]. Available: https://deeplizard.com/learn/
video/km7pxKy4UHU

[23] J. Tjønnås, T. M. Seeberg, O. M. H. Rindal, P. Haugnes, and Ø. Sand-
bakk, “Assessment of basic motions and technique identification in
classical cross-country skiing,” Frontiers in psychology, vol. 10, p. 1260,
2019.

https://www.tensorflow.org/
https://www.tensorflow.org/tutorials
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://www.tutorialspoint.com/python/os_mkdir.htm
https://deeplizard.com/learn/video/km7pxKy4UHU
https://deeplizard.com/learn/video/km7pxKy4UHU

	Introduction
	Methods
	Video frames, regions of interest and data augmentation
	Data labelling
	Feature extraction
	Dataset creation
	Neural Network models
	Software as a whole

	Results
	Dataset
	CNN
	Lateral videos
	Frontal videos

	Software as a whole

	Discusion
	Conclusion
	References

